
 

 

 

 

APPENDIX A. CALCULATION OF PROJECTION MATRIX P 

 

The pinhole camera model is used to describe the 

mathematical relationship between the coordinates of a 3D 

point and its projection onto the image (Hartley and Zisserman, 

2003). Under these assumptions, the relationship between 𝑚̃ 

and 𝑀̃ is given by: 

 

𝑠 ∙ 𝑚̃ = 𝐴 ∙ [𝑅 𝑇] ∙ 𝑀̃ (A.1) 

 

where 𝑠 is an arbitrary scale factor, 𝐴 is the camera intrinsic 

matrix, and 𝑅, 𝑇 are the extrinsic parameters (rotation and 

translation matrices, respectively). Camera calibration is the 

procedure to calculate all these intrinsic and extrinsic 

parameters in order to be able to relate 3D metric information 

and 2D projection points.  

The projection matrix for camera 𝑖 can be defined as 𝑃𝑖 =
𝐴𝑖 ∙ [𝑅𝑖 𝑇𝑖] (being 𝑃𝑖  a 3𝑥4 matrix). Considering scale factor 

𝑠 = 1, equation (A.1) can be rewritten as: 

 

𝑚̃ = 𝑃𝑖 ∙ 𝑀̃ (A.2) 

 

 
FIGURE A.1. 2D images representing the activity recorded by both 

retinas during calibration after binarization. Each cluster of pixels 

corresponds to a blinking LED. Some epipolar lines are shown. The 

disparity of the upper left LED is 23.8 pixels, and the mean disparity for all 
the LEDs is 24.55 pixels. 

Therefore, knowing the projection matrices of the different 

cameras in a vision system can be enough to extract the 

coordinates of the 3D points in space from their corresponding 

2D projections (shown in Figure A.1), with no need to obtain 

all the specific intrinsic and extrinsic parameters. This 

represents an important simplification of the calibration 

procedure.  

After calculating 𝑚̃1
𝑗
 and 𝑚̃2

𝑗
 (𝑗 = 1,…36) and knowing 𝑀̃𝑗, 

we can apply any algorithm that was developed for traditional 

frame-based computer vision (Longuet-Higgins, 1981) to 

extract 𝑃1 and 𝑃2. For the algorithm used in this work, equation 

(A.2) can be rewritten as: 

 

𝑚̃ × 𝑃𝑀̃ = 0 (A.3) 

 

The terms in equation (A.3) can be rearranged to obtain a 

new equation in the form 𝐴𝑏 = 0: 

 

(
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(A.4) 

 

where 𝑃𝑖
𝑇  is the 𝑖 − 𝑡ℎ row of the transposed projection matrix. 

Given that only two rows of matrix A are linearly independent, 

if we have n different calibration points, we can write: 
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(A.5) 

 

where  𝑀̃𝑖
𝑇 represents the 3D coordinates of the  𝑖 − 𝑡ℎ 

calibration point, and (𝑥𝑖 , 𝑦𝑖) the camera 2D coordinates of the 

𝑖 − 𝑡ℎ calibration point. This can be solved as a linear least 

squares minimization problem, giving matrix 𝑃 as a solution. 

One equivalent system must be solved for each camera.  

APPENDIX B. CALCULATION OF RECONSTRUCTED 3D 

COORDINATES 

 

In order to solve equations (3), we rearrange terms to obtain 

a single equation in the form 𝐴𝑏 = 0 (Hartley and Zisserman, 

2003): 

 

(

−𝑃𝑖,2 + 𝑦𝑖𝑃𝑖,3
𝑃𝑖,1 − 𝑥𝑖𝑃𝑖,3

−𝑦𝑖𝑃𝑖,1 + 𝑥𝑖𝑃𝑖,2

) 𝑀̃ = 03𝑥1 

(B.1) 

 

where 𝑃𝑖,𝑗 represents the 𝑗 − 𝑡ℎ row of the projection matrix 

corresponding to retina 𝑖 (𝑖 = 1,2). Given that only two rows of 

this matrix are linearly independent, we can write the following 

system: 

 

(

 

−𝑃1,2 + 𝑦1𝑃1,3
𝑃1,1 − 𝑥1𝑃1,3
−𝑃2,2 + 𝑦2𝑃2,3
𝑃2,1 − 𝑥2𝑃2,3 )

 𝑀̃ = 04𝑥1 

(B.2) 

 



 

 

 

 

This can be solved as a linear least squares minimization 

problem, giving the final 3D coordinates 𝑀 = [𝑋 𝑌 𝑍]𝑇 as a 

solution. 


